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Surrogate data is a well-known method in nonlinear time series analysis and it has been widely used in
testing nonlinearity. Fourier transform-based surrogates are artificially generated time series which share the
linear properties of the observed series. They can be used for the generation of critical values for test statistics.
In this paper we will show that the variance of these critical values may be of the same order as the variance
of the test statistic itself. This changes the nature of the test because the test rejects if the test statistic divided
by the critical value exceeds 1. An example is a test for normality that checks higher-order empirical cumu-
lants. We will show that such a test is transformed to a test on(circular) stationarity.
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I. INTRODUCTION

Surrogate data testing is by now a well-established
method in nonlinear time series analysis. In this paper we
will discuss the application of surrogate data to testing. We
will show that the nature of a test may change drastically by
the application of surrogate data. After the application of
surrogates, use of a test statistic that measures a certain type
of deviation from the null hypothesis may result in a test that
looks for a quite different type of alternative. This happens
because surrogate data tests depend on two random quanti-
ties: on the test statistic and on the quantiles estimated by the
surrogate data. In most other resampling methods, the esti-
mated quantiles asymptotically stabilize. Then, the stochastic
performance approximately depends only on the stochastic
distribution of the test statistic. But we will see that in the
case of surrogate resamples, this does not hold. This is the
main point of this paper. In particular, we will argue that it is
not sufficient only to study the distribution of the test statistic
to analyze surrogate data tests. One has to consider the joint
distribution of the test statistic and the surrogate critical
value to understand when the test statistic is larger than the
surrogate critical value. In this paper we will do this for a
series of different test statistics.

The term “surrogate data” was first introduced by[1], but
the basic idea appeared in a number of earlier publications
(see[2–4]). The method in[3] is called multivariate scaling
analysis. The method of surrogate data is a resampling
method. Additional data are artificially generated and they
are used to get an impression of a test statistic on a hypoth-
esis. The classical algorithm is based on Fourier transform
(FT) of the data. One computes the discrete Fourier trans-
form (DFT) of the data, randomizes the phases, and then
inverts the transform. In the literature, this method is also
known as phase scrambling or Fourier bootstrap. We call it
FT-based surrogates or simply surrogates. A discussion can
be found in Sec. II. The most prominent application of sur-
rogate data is testing for nonlinearity of a time series. The

basic idea is to use surrogates for generating random data
that only share linear properties with the observed time se-
ries, and to compare measures of nonlinearity for the gener-
ated random data and the observed process. It is then argued
that if there is no significant difference, then there is no
reason to reject linear stochastic modeling of the data. Such
findings can be used to discuss whether the data are gener-
ated by some chaotic system. Instead of considering the hy-
pothesis that the underlying dynamics is chaotic, it has been
formulated the other way around. The null hypothesis is that
the data are generated by some linear stochastic process. In
particular, the more restrictive null hypothesis, that the data
follow a Gaussian-linear stochastic process, has been consid-
ered by several authors. For such a null hypothesis, different
test statistics have been used. Typically, test statistics have a
direct interpretation, e.g., they may measure a distance from
the null hypothesis by some empirical quantity. If this quan-
tity significantly differs from 0, then the null hypothesis is
rejected. When the distribution of the quantity is constant
over the null hypothesis, then the null hypothesis is rejected
by a level a test if the quantity exceeds the
1−a quantile of this distribution(“the critical value”). If a
test statistic is nonpivotal, its distribution varies over the null
hypothesis. Then a classical approach is to approximate this
distribution by a normal distribution with estimated variance.
Another more recent approach is based on resampling. Arti-
ficial data are generated that(approximately) follow a fitted
stochastic model from the null distribution, and the distribu-
tion of the test statistic is approximated by the distribution of
the artificial data set. It is proved in[5] that surrogate data
resampling leads to valid tests for the case of circular sta-
tionary Gaussian processes: for all choices of test statistics
one gets a test with exact levela. This result has been used
to argue that for(noncircular) stationary processes one
achieves approximately correct levels for surrogate tests if
the test statistic does not heavily depend on boundary values
of the time series(see[5]). We will give a short outline of the
basic arguments in Sec. III. However, we will see that these
results do not imply that surrogate data consistently estimate
the critical values of the test statistic. A surrogate data test
strongly differs from the test that rejects if the test statistics
exceeds its critical value. A detailed description and discus-
sion of this fact can be found in Sec. IV. This will be done by
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simulations and some asymptotic calculations. In Sec. V, a
detailed technical discussion on two test statistics is given.
Concluding remarks will be made in Sec. VI.

II. SURROGATE DATA

The method of surrogate data was first suggested by[1].
They proposed this method to check the statistical signifi-
cance of a test statistic. Two distinct approaches, the typical
realization approach and the method of constrained realiza-
tion, were compared in[6]. The typical realization approach
is similar to traditional bootstrap methods, where explicit
model equations are fitted from the data and are used for the
generation of resamples. The constrained realization method
was proposed for the implementation of test procedures. In
this approach the fitting of model equations is avoided. The
principal idea is to generate data that are consistent with the
hypothesis under consideration.

We now shortly review the method of generating surro-
gates based on Fourier transforms. Suppose a data vector
XN=sX1, . . . ,XNd is generated by a stationary Gaussian pro-
cess. In this paper, following statistical language, we always
understand a stationary Gaussian process as a stationarylin-
ear Gaussian process. A process is called Gaussian if its full
dimensional distribution(and not only the marginal distribu-
tion of an amplitude at one fixed time point) is Gaussian.
Then, stationarity and Gaussianity imply linearity, see Sec.
5.7 in Brockwell and Davis[7]. So, linearity need not be
explicitly mentioned.

The periodogram functionIXsvd, in terms of DFT, is de-
fined as follows:

IXsvd =
1

2pN
Uo

t=1

N

Xt exps− ivtdU2

= uzXN
svdu2. s1d

Given the sample sizeN, the DFT at the Fourier frequency
v j =2p j /N, j =1, . . . ,N can be written as(in polar form)
zXN

sv jd=ÎIXsv jd expsiu jd, whereu j is the phase. Then, us-
ing inverse FT and some simple algebra,Xt’s can be recov-
ered from DFT’s as

Xt = X̄ +Î2p

N
o
j=1

m

2ÎIXsv jd cossv jt + u jd, t = 1, . . . ,N,

s2d

for odd N and whenN is even

Xt = X̄ +Î2p

N
o
j=1

m

2ÎIXsv jdcossv jt + u jd

+Î2p

N
IXsvN/2dcosspt + uN/2d, t = 1, . . . ,N. s3d

Here we definem=sN−1d /2 when N is odd andm=sN
−2d /2 whenN is even.

Surrogate data are generated by replacing the phases
u1,u2, . . . by random valuesu1

* ,u2
* , . . . in (2) and (3). Here

u1
* , . . . ,um

* are independent and identically distributed
Uf0,2pg and independent ofuN/2

* (whenN is even), which is
0 or p with a probability of 0.5.

By construction, the surrogate dataX* preserves the ob-
served sample mean and periodogram values, that is

X̄* = X̄, IX*sv jd = IXsv jd, j = 1, . . . ,N.

It also preserves the circular autocovariances given by

1

N
o
t=1

N

sXt
* − X̄*dsXt+k

* − X̄*d =
1

N
o
t=1

N

sXt − X̄dsXt+k − X̄d = rk,c,

whereXt+N=Xt , Xt+N
* =Xt

* .
The surrogate data are conditionally circular stationary

[given the original sampleXN=sX1, . . . ,XNd]. A processhXtj
is circular of indexN, if Xj+kN=Xj for each 1ø j øN and
positive integerk. This implies that

E*sXt
*d = X̄

and for 1øqøpøN,

Cov*sXp,Xqd = E*sXp
* − X̄dsXq

* − X̄d = rp−q,c.

HereE* denotes the conditional expectation given the origi-
nal sample. Similarly, Cov* denotes the conditional covari-
ance.

The finite-dimensional conditional distributions of FT-
based surrogates are asymptotically Gaussian(with autoco-
variances equal to the observed circular autocovariances and
with mean equal to the empirical mean of the observed pro-
cess). This follows under mild conditions on the spectral
density function and by standard asymptotic arguments using
(2) and (3), with u j replaced byu j

* . The surrogates have by
definition a symmetric distribution. This implies that all ex-
pected odd-order central moments of the surrogate series
vanish, as is the case for the original data set. However,
higher-order even central and noncentral moments are not
preserved and they do not match with the corresponding em-
pirical moments of the observed series. For more results on
higher-order moments, see[8].

III. ACCURACY OF LEVELS OF SURROGATE TESTS

There were some discussions on the validity of surrogate
data tests. Asymptotics for the distribution of surrogate data
were studied by[9]. In [10], (FT-based) surrogate data were
compared with some other resampling schemes for time se-
ries. Higher-order moments and cumulants of surrogate data
for a wide range of time series models were compared in[8].
It was done for the standard method of phase randomization
[1] and for the rescaling method[10]. These results were
applied to develop diagnostic tests to check convergence of
Markov-Chain Monte Carlo algorithms. The power of surro-
gate data tests was discussed in[11] and [12], and it was
argued that rejections may be caused by the only reason that
the assumption of stationarity is violated. Our paper is an
attempt to present detailed discussions of these findings. The
validity of the method of(FT-based) surrogate data testing
was considered in[5]. There, it was shown that surrogate
data tests achieve exact levels for circular stationary Gauss-
ian processes. In this section we expose his approach and
discuss some conclusions. We argue that the surrogate data

E. MAMMEN AND S. NANDI PHYSICAL REVIEW E 70, 016121(2004)

016121-2



method is the only valid method for the full model of circular
stationary Gaussian processes and that there exist alternative
resampling schemes only for more restrictive models. We
conjecture that under suitable conditions these findings carry
over asymptotically to noncircular models. A circular process
is Gaussian ifXN=sX1, . . . ,XNd is a multivariate Gaussian. A
Gaussian circular process of indexN is stationary if theXt’s
have an identical mean and the covariance matrix ofXN is a
circular matrix.

For circular stationary Gaussian processes surrogate data
tests achieve the correct level. This holds for all test statis-
tics. The rejection probability is constant and equal to the
level. Such tests are called similar. On the other hand, the
following controversial statement holds: If for a fixed test
statistic the critical values should be chosen, such that the
test becomes similar(i.e., has constant rejection probability),
then the only way to achieve this aim is by calculating the
critical values by the method of surrogate data. These two
results are due to[5]. The main step to prove these results is
the following fact: For a Gaussian circular stationary pro-
cess, sample mean and circular sample autocovariances(or
equivalently sample periodogram) are sufficient statistics.
This means that the conditional distribution of the process
given these statistics is fixed and does not depend on the
parameters of the process. Furthermore, this conditional dis-
tribution is the distribution of surrogate data. For an expla-
nation on why these two statements imply the results of[5],
we briefly recall some facts from the theory of similar tests.

Let a be the size of a testfsXd, whereX is the vector of
observations. The test is similar ifEu fsXd=a for all u
PQ0, whereQ0 is the set of parameters on the null hypoth-
eses. Similar tests can be easily constructed if a sufficient
statisticS is available. LetPX=hPu ,uPQ0j be the family of
distributions ofX on the hypotheses. Then the conditional
distribution ofX given S does not depend on the underlying
parameteruPQ0 becauseS is sufficient. In particular,
EffsXd uS=sg does not depend onu. Then any test satisfying

EffsXduS= sg = a s4d

(except on a set of probability measure zero) is similar on
PX. This immediately follows from

EffsXdg = EEffsXduSg = a.

A test satisfying(4) is said to have Neyman structure with
respect toS.

Let us consider a test statisticT= fsXd where now, on the
null hypotheses,X is a circular stationary process. The basic
idea of surrogate tests is to compareT with T* = fsX*d, where
X* are surrogate data. We now chooseS as the tuple of
sample mean and sample circular autocovariances. On the
hypothesis of circular stationary processes this is a sufficient
statistic and, givenS, the statisticsT and T* have the same
conditional distribution, see above. For a givenS=s, choose
now kasSd such that

PfT* ù kasSduS= sg = a.

Then

PufT ù kasSdg = EuhPufT ù kasSduSgj

= EuhPfT ù kasSduSgj

= EuhPfT* ù kasSduSgj

= a.

Thus, surrogate tests achieve a correct level for all test sta-
tistics.

Suppose now that one wants to have a test with constant
level a on a subsetQ0

* ,Q0 of the null hypothesis, i.e.,

PusT . kad = a for all u P Q0
* .

Then

EuhPufT . kauSgj = PusT . kad = a for all u P Q0
* .

Write now usSd=PufT.ka uSg. Note thatusSd does not de-
pend onu becauseS is a sufficient statistic. Thus we have
that

EuusSd = a for all u P Q0
* .

If the family of distributions of S (for uPQ0
*) is “rich

enough,” this implies that the functionu is constant and
equal toa. We now give a sufficient condition onQ0

* for this
implication. Suppose that the parameteru is given by the
meanm of Xt and by the autocovariancesgskd=EfsXt−md
3sXt+k−mdg for 0økøN/2. Then it can be shown that the
implication holds ifQ0

* contains a nondegenerate rectangle.
Suppose that this holds. ThenPsT* .ka uSd=PsT.ka uSd
=usSd=a. Thus the only way to calculate exact critical val-
ues of a test statistic with a constant level is given by the use
of surrogate data. So, at first sight, there seems to be no
alternative to surrogate data. However, there are alternatives
if we relax our assumption on the level of accuracy. If we
only require that the level is asymptotically equal toa and
that this asymptotic relation only applies for a subclass of
short-range-dependent processes we conjecture that a much
more rich class of resampling methods has asymptotically
correct levels. Note that for short-range-dependent processes
gskd converges to 0 exponentially fork→`. This violates
the condition thatQ0

* contains a nondegenerate rectangle.
In this paper we discuss if the randomness of the surro-

gate data quantilekasSd changes the nature of a test. We will
give examples where this is the case and where this does not
happen. We conjecture that a discrimination between these
two cases could be based on the check ifT is (asymptoti-
cally) pivotal. A test statistic is called pivotal if its distribu-
tion does not depend on the underlying model parameter. By
construction, surrogate data have the same unconditional dis-
tribution as the original sample. Therefore, also the pivotal
test statistic calculated for the surrogate data has the same
unconditional distribution(not depending on the model pa-
rameter). The distribution of the sufficient statisticSdepends
on the parameteru. Let us denote this distribution byPu

S.
Furthermore, we writePu

T for the distribution ofT. If T is
pivotal, PT=Pu

T does not depend onu. The conditional dis-
tribution of T given S defines a Markov kernelK that does
not depend onu becauseS is sufficient. We can writeKPu

S

=PT for parameteru. Suppose now that the familyPu
S is “rich
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enough.” Then all elements of the family are mapped onto
the same measurePT. Typically, this only holds ifK is de-
generated, i.e., the conditional distribution ofT given S=s
does not depend ons. ThenkasSd also does not depend onS,
i.e.,kasSd is nonrandom. On the other side ifT is nonpivotal,
Pu

T depends onu and it cannot be thatK is degenerated. Then
at least for somea, the quantilekasSd must depend onS.
These considerations motivate the conjecture that the change
of the nature of a test by surrogate data is moderate in case of
approximately pivotal test statistics.

IV. SOME TESTS AND THEIR SURROGATE VERSIONS

This section contains our major findings. We will discuss
how the nature of a test changes due to the application of
surrogate data critical values. We will do this for a class of
test statistics. We start by considering the following class of
circular processes:

Xt = A + co
j=1

m

ÎBj
2 + Cj

2 cossv jt + u jd, t = 1, . . . ,N, s5d

where A,Ns0,s2d, Bj ,Cj ,Ns0,s j
2d, u j ,Uf0,2pg and A,

Bj, Cj, and u j (with j =1, . . . ,m) are independent. Further-
more,v j =2p j /N, c=Î2p /N, m=sN−1d /2, if N is odd and
m=sN−2d /2, if N is even. Note that forN odd all circular
stationary Gaussian processes with mean zero can be repre-
sented in the form(5) [see Eq.(2)]. For evenN the last
additive term in(3) is put equal to zero. Typically, this would
result in an asymptotically negligible change for most circu-
lar stationary Gaussian processes with mean zero.

For Xt defined in(5) we have

IXsvkd =
sBk

2 + Ck
2d

4
, k = 1, . . . ,m and IXsvN−kd = IXsvkd,

EsXtd = 0 and CovsXp,Xqd = rp−q + rN−sp−qd,

1 ø q ø p ø N.

Here

rk =
1

N
o
t=1

N−k

sXt − X̄dsXt+k − X̄d

is thek-lag sample autocovariance.
For the process defined in(5) we consider different test

statistics, namely first-lag sample autocorrelation, measures
of asymmetry, higher-order central moments, higher-order
joint central moments, and higher-order cumulants. Other
measures have been proposed for checking the nonlinear
chaotic behavior of the generator of a time series. In particu-
lar, correlation dimension and maximum Lyapunov exponent
are widely used. But these statistics cannot be calculated by
an automatic procedure, and for this reason, it is difficult to
implement them in a simulation study. As an alternative we
have considered correlation sums. They are defined as
samples analogous of correlation integrals and can be com-
puted by an automatic scheme. The following test statistics
have been used in our simulation study:

T1 =
1

N
o
t=1

N−1

sXt − X̄dsXt+1 − X̄d/ŝ2, T2 = o
t=1

N

sXt − X̄d3/ŝ3,

T3 =
N hXt . Xt+1j

N
, T4 =

1

N
o
t=1

N

sXt − X̄d4,

T5 =
1

N
o
t=1

N

sXt − X̄d5, T6 =
1

N
o
t=1

N

sXt − X̄d6,

T7 = 1
No

t=1

N

sXt − X̄d7, T8 = max
t

Qstd,

Qstd =
o t=t+1

N sXt−t − Xtd3

fo t=t+1
N sXt−t − Xtd2g3/2,

T9 =
1

N
o
t=1

N−2

p
k=0

2

sXt+k − X̄d, T10 =
1

N
o
t=1

N−4

p
k=0

4

sXt+k − X̄d,

T11 = CNsrd, T12 = logfCNsrdg/logsrd,

whereŝ2=N−1ot=1
N sXt−X̄d2 and

CNsrd =
o i=2

N o j=1
i IsiX i

n − X j
ni , rd

NsN − 1d/2

denotes the correlation sum. HereI is the indicator function
and iXi=maxkuXku. The vector X i

n=sXi−sn−1dd,
Xi−sn−2dd, . . . ,XidT belongs to the phase space with embedding
dimensionn and the delay timed. We use delay timed=2.
Simulations were done for different embedding dimensions.
The results turned out to be similar and we report the results
only for embedding dimensionn=4.

The test statisticT1 has been added for theoretical rea-
sons. Its use would only make sense for testing if the one-lag
autocorrelation exceeds a certain level. For our hypothesis
that contains processes with autocorrelations of all values
between −1 and 1, this test statistic makes no sense. But we
will see how the method of surrogate data transforms this
test into a meaningful test. The test statisticsT3 andT8 have
been proposed as measures of time asymmetry. It has been
argued that time asymmetry gives a strong indication for
nonlinearity. The statisticsT2 andT4, . . . ,T7 have been pro-
posed as test statistics for normality.T4, . . . ,T7 could be re-
placed by studentized versions, e.g.,T4/ ŝ4. This would not
change the surrogate test becauseŝ2 has an identical value
for the original data and for the surrogate data, i.e,

N−1ot=1
N sXt−X̄d2=N−1ot=1

N sXt
* −X̄*d2. The test statisticsT9 and

T10 are joint higher-order central moments and they are pro-
posed to test the nonlinearity of the dynamics. We have also
considered other higher-order cumulants as in[8], but they
are not reported here.

In our simulation study we generated data from model(5)
for different choices ofs j

2: s js1d
2 =exps−j /md, s js2d

2 =exps−jd,
s js3d

2 = IYsv jd, whereIYsv jd is the periodogram function atv j
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of one realization of an autoregressive(AR) processYt of
order 2. Herej =1, . . . ,m and m=sN−1d /2 if N is odd and
m=sN−2d /2, if N is even. We always chooses2=1.0. The
Gaussian random variables and uniformly distributed ran-
dom variables are generated by using the routines given in
[13]. Note that for the processes generated by usings js2d

2

=exps−jd, the autocorrelation very slowly decreases, e.g., the
autocorrelation betweenX1 andXm is approximately equal to
−0.4. The time series generated bys js3d

2 = IYsv jd is circular,
but at the same time, the autocorrelation function matches
that of the underlying AR(2) process. We have considered
several stationary Gaussian AR(2) processes, but we will re-
port here only forYt=1.5Yt−1−.55Yt−2+et. For generating the
surrogates, we computed the periodogram values(or the
DFT), at v j =2p j /N, j =1, . . . ,m with the fast Fourier trans-
form algorithm. We used sample sizeN=256. For each simu-
latedXN, 1000 surrogate data vectorsXN

* were generated and
for each of these 1000 surrogate data vectors we calculate the
test statisticsTjsXN

* d for j =1, . . . ,12. Thes1−ad-th quantile

of TjsXN
* d is denoted byk̂ja. This whole procedure is repli-

cated 1000 times. This gives 1000 values of the critical val-

ues k̂ja and 1000 values of the test statisticTjsXNd. The s1
−ad-th quantile of the 1000 values of the test statistic is
denoted bykja. This is an approximation for thes1−ad-th
quantile of the distribution ofTjsXNd and is calculated by
Monte Carlo calculations. In the following discussions, we
will neglect the(random) inaccuracy in the Monte Carlo cal-
culation ofkja. We compare two tests: the surrogate data test

that rejects if TjsXNd. k̂ja and the test that rejects if
TjsXNd.kja. Clearly, for real data the second test is not
available because it requires knowledge of the distribution of
the test statistic. We have included this test for theoretical
reasons. One may conjecture that these two tests are asymp-
totically equivalent: the probability that one test rejects and
the other one accepts converges to zero. If this would be true
(for the hypothesis and for the alternative) it would allow for
a very simple understanding of the surrogate data test. In
particular, it would give simple asymptotic formulas for the
power function of the surrogate data test. We will see that in
general the asymptotic equivalence of the two tests does not

hold. For many cases the surrogate data estimatek̂ja of the
critical value significantly differs from the true critical value
kja. In this respect surrogate data tests show a distinct behav-
ior as compared to other resampling tests. For a large class of

models, and for other resampling methods, one has thatk̂ja
andkja are asymptotically equivalent. Histograms of the test
statisticsTjsXNd and the corresponding surrogate critical val-

ues k̂ja for a=.05 are plotted in Figs. 1–7 for test statistics
T3, T4, T8, T9, T10, T11, and T12. This is done fors js1d

2

=exps−jd. Similar plots with other test statistics are not in-
cluded to avoid repetitions. For some test statistics, the criti-
cal values concentrate around a fixed valuec, for example.
Thus in this case, the surrogate test will show a similar be-
havior as the test that rejects if the test statistic exceeds the
value c. On the other hand, forT1, T4, T6, T11, andT12 the
range of the values of the test statistic is of the same order as
the range of the surrogate data estimate of their critical val-

ues. Thusk̂ja is not asymptotically equivalent to the true
nonrandom quantilekja and the surrogate data test

TjsXNd. k̂ja may be quite different from the theoretical test
that rejects ifTjsXNd.kja. So in this case, for an understand-
ing of the surrogate test it does not suffice to study the dis-
tribution of the test statistic alone. Here we have to look at
the joint distribution of the test statistic and of the surrogate
critical values. Only an understanding of the joint distribu-
tion enables us to study when the test statistic is larger than
the surrogate critical value. In particular, it is clear that in
this case the surrogate test strongly differs from the test that
rejects if the test statistic exceeds its critical value.

Table I gives a detailed overview on the quantitative dif-
ferences between the two tests fora=0.05 and for test sta-
tisticsT1–T12. The differences are measured byp, p1, andp2,
which are defined as follows:

p =
N hTjsXNd . k̂jaj

1000
,

p1 =
N hTjsXNd . k̂ja,TjsXNd , kjaj

1000
,

FIG. 1. Plot of the histogram of the test statisticT3 (upper plot)
and plot of the histogram of 95% quantiles based on surrogate data
(lower plot).
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p2 =
N hTjsXNd , k̂ja,TjsXNd . kjaj

1000
. s6d

The fractionp gives an estimate of the level of the surrogate
data test. Because the test achieves the correct level for all
test statistics,p should be equal toa. So the different values
of p are only caused by simulation errors. They are reported
here for better interpretation ofp1 and p2. The fractionsp1
and p2 count the relative number of cases where one test
rejects and the other one accepts. Whenp1 and p2 are large
and almost equal to the sizea of the test, then this implies

that the setshTjsXNd. k̂jaj and hTjsXNd.kjaj are almost
nonoverlapping. When the two probabilities are small the
above two sets overlap in a large area. Figures 1–7 and Table
I show that the considered tests behave quite differently. For
T1, T4, T6, T11, andT12 the variance of the surrogate quantiles
is of the same order as the variance of the test statistic itself.
This explains the large values ofp1 andp2 in Table I. For the
other test statistics,p1 andp2 are smaller, but not negligible.
For the test statisticT3 with s js1d

2 , the quantiles based on
surrogates concentrate at one value(plot is not provided

here). Thenk̂ja=kja and it holds thatp1=p2=0. But forT3, in
the case of long-range-dependent processes the values ofp1
andp2 are nonnegligible. We conclude that in many cases the

testsTjsXNd. k̂ja andTjsXNd.kja behave quite differently.

Our simulations only show this for the hypothesis. By a stan-
dard asymptotic argument this can be extended to points of
the alternative. Neighbored points of the alternative, i.e,.
points for which the Neyman-Pearson test has nontrivial
power, are also called contiguous. If a statisticSN converges
to zero under a contiguous point of the alternative, then it
must also converge to zero on the hypothesis. This is a cen-
tral argument often used in asymptotic test theory. Applica-

tion with SN=sk̂ja−kjad / fvarhTjsXNdjg1/2 shows that this
quantity cannot converge to zero on contiguous alternative
points (because otherwise it must also converge to zero for
points of the hypothesis). This implies that the two tests be-
have differently also on contiguous points of the alternative.

All realizations of the processes, so far discussed, are of
length N=256. For such a small data size one may expect
large variations of the test statistics. It may be argued that the
described phenomenon is an effect due to small sample size.
In many applications, one comes across very large data sets.
Due to this reason, we have repeated simulations for longer
time series. We consider circular process(5) with s j

2

=exps−jd andN=2048. The results are reported in Table III.
The values ofp1 and p2 are not close to zero. This implies
that surrogate data tests do not consistently estimate their
critical values. We conclude that the same findings, as above,
also apply for large data sets. The tests based on surrogate re-
samples may behave quite differently from the theoretical

FIG. 2. Plot of the histogram of the test statisticT4 (upper plot)
and plot of the histogram of 95% quantiles based on surrogate data
(lower plot).

FIG. 3. Plot of the histogram of the test statisticT8 (upper plot)
and plot of the histogram of 95% quantiles based on surrogate data
(lower plot).
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tests that reject if test statistics exceed their critical values.
Up to now we only considered circular processes. This

was done because for these processes surrogate data tests
achieve exact levels. We now present simulations for an
(noncircular) AR(1) process:

Xt = fXt−1 + et, e , Ns0,1d, s7d

with f=0.5 and 0.99. We have made simulations for the
same test statistics as for the circular processes. The results
for different AR(1) processes with surrogate resamples are
given in Table II. We observe that also for such processes,p1
andp2 are not negligible. For noncircular processes, no the-
oretical result about asymptotic and finite-sample level accu-
racy (like circular processes) exists. In the simulations, we
observe that levels are approximately correct for the process
(7) with f=0.5, but level inaccuracies have been observed
for most of the test statistics whenf=0.99. This implies that
some restrictions on the test statistics and/or models are re-
quired for noncircular processes. Also forf=0.99, we get
that p1 and p2 are quite large. For longer time series with
N=2048(see Table III), this effect does not disappear. Thus,
again, we conclude that surrogate data tests are quite differ-
ent from the theoretical test that rejects if the test statistic
exceeds its critical value.

Surrogate data tests achieve finite-sample level accuracies
for all circular stationary Gaussian processes. As mentioned
above, for other resampling methods a quite different behav-

ior was claimed in theoretical studies; e.g., in a lot of papers
on bootstrap for a wide range of applications it was shown
that the bootstrap test is asymptotically equivalent to the the-
oretical test that rejects if the test statistic exceeds its(un-
known) s1−ad-th quantile. This would imply a performance
of bootstrap tests that is qualitatively different from that ob-
served here for surrogate data tests. We checked this by a
small simulation. For autoregressive processes we imple-
mented a parametric bootstrap method. We have excluded
T1, T11, andT12, as no proper bootstrap procedure was found
for testing using these test statistics. Resamples are generated
from the fitted autoregressive process and they are used to
calculate test statistics denoted byTj

* . Bootstrap tests work in
a slightly different way than surrogate data tests. The boot-
strap resamplessX1

* , . . . ,Xn
*d cannot directly be used for

checking the significance ofTj because the bootstrap resa-
mples do not fulfill the hypothesis of the test statistic; e.g.,
for j =3, we do not have that the conditional mean of
hXi

* .Xi+1
* j is equal to 0.5. For this reason we follow the

usual bootstrap approach based on prepivoting. The boot-

strap test rejects iffTj −m jg / ŝl ù k̂ja
b . Herem j =EfTjg in case

EfTjg is known, i.e., forj =2,3,5,7,9, and 10. Forj =4, it is
estimated asm j =3ŝ4 and for j =6, the termm j is put equal to
15ŝ6. The normingŝl substitute the usual studentization that
is known to measure a higher-order accuracy of bootstrap.
Naturally we putl =0 for j =3; l =3 for j =2,9; l = j for j

=4, . . . ,7; andl =5 for j =10. The quantilek̂ja
b is calculated

FIG. 4. Plot of the histogram of the test statisticT9 (upper plot)
and plot of the histogram of 95% quantiles based on surrogate data
(lower plot).

FIG. 5. Plot of the histogram of the test statisticT10 (upper plot)
and plot of the histogram of 95% quantiles based on surrogate data
(lower plot).
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by bootstrap resampling. It is the conditional quantile of
fTj

* −E*sTj
*dg / ŝ* l, whereE* denotes the conditional expecta-

tion given the original sample andŝ* l is the empirical vari-
ance of a bootstrap sample. Forj =8 we used the same test
statistic as above. In the resampling we calculatedT8

*

=maxt Q*std, whereQ*std=Q8std−E*Q8std andQ8std is de-
fined asQstd, but with the original sample replaced by a
bootstrap sample. The results of the simulations withN
=256 and 2048 are summarized in Table IV. The level accu-
racy is slightly worse compared to the performance of surro-
gate data. The relative values ofp1 and p2 are slightly
smaller than for surrogate data if one corrects for level inac-
curacies.(Note thatp+p2−p1=0.05 and for this reasonp1
and p2 cannot vanish ifp−0.05 is large in absolute value.)
Thus the simulations support the conjecture that surrogate
data testing has more accurate level accuracies but may
change the nature of the test. But the differences seem not so
large as may be expected from the bootstrap literature.

V. DETAILED DISCUSSION OF TEST STATISTICS
T1 AND T4

In this section, we discuss why surrogate data tests based
on test statisticsT1 and T4 transform to tests for circular
stationarity.T1 was proposed to test whether first-lag auto-
correlation exceeds a certain value, whereasT4 was proposed
to measure deviations from normality. But after application

of surrogate data, tests based onT1 and T4 look for quite
different types of alternatives. We have discussed forT1 and
T4, but similar arguments also apply for other test statistics.
Because the circular sample autocovariance is preserved for
surrogate data we have that

T1sXNd +
1

N
sXN − X̄dsX1 − X̄dŝ−2

= T1sXN
* d +

1

N
sXN

* − X̄dsX1
* − X̄dŝ−2.

This gives

fT1sXNd − T1sXN
* dgŝ2 =

c2

N
o
j ,k=1

m

sBj
2 + Cj

2d1/2sBk
2

+ Ck
2d1/2fcossu j

*dcossvk + uk
*d

− cossu jdcossvk + ukdg.

The surrogate data test rejects if thes1−ad-th quantile of
the conditional distribution of this difference(given Bj, Cj,
andu j for j =1, . . . ,m) exceeds 0. This test has exact levela
for the hypothesis that(conditionally givenBj and Cj for j
=1, . . . ,m) the variablesu1, . . . ,um are conditionally inde-
pendent with uniform distribution onf0,2pg. It could be
argued that this is a test that measures deviations from the
hypothesis of circular stationarity.

FIG. 6. Plot of the histogram of the test statisticT11 (upper plot)
and plot of the histogram of 95% quantiles based on surrogate data
(lower plot).

FIG. 7. Plot of the histogram of the test statisticT12 (upper plot)
and plot of the histogram of 95% quantiles based on surrogate data
(lower plot).
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Similar arguments apply for the test statisticT4. Again, by
construction, the surrogate data test rejects with probabilitya
if (conditionally givenBj and Cj for j =1, . . . ,m) the vari-
ablesu1, . . . ,um are conditionally independent with uniform
distribution onf0,2pg. No further restriction on the distribu-
tions of Bj and Cj for j =1, . . . ,m is needed. In particular,
they may have very heavy tailed distributions. That means
that this surrogate data test does not look for deviations from
normality. Again, it is a test for circular stationarity. This
may become also clear by the following representation:

T4sXNd − T4sXN
* d =

c4

8 o
j1+j2+j3+j4=N

ds j1, j2, j3, j4dfcossu j1
+ u j2

+ u j3
+ u j4

d − cossu j1
* + u j2

* + u j3
* + u j4

* dg

+
c4

2 o
j1+j2+j3−j4Ph0,Nj

ds j1, j2, j3, j4d

3fcossu j1
+ u j2

+ u j3
− u j4

d − cossu j1
*

+ u j2
* + u j3

* − u j4
* dg

+
3c4

8 o
j1+j2−j3−j4=0

ds j1, j2, j3, j4dfcossu j1

+ u j2
− u j3

− u j4
d

− cossu j1
* + u j2

* − u j3
* − u j4

* dg,

where

ds j1, j2, j3, j4d = fsBj1
2 + Cj1

2 dsBj2
2 + Cj2

2 dsBj3
2 + Cj3

2 dsBj4
2

+ Cj4
2 dg1/2.

So in particular this surrogate test checks if the distribu-
tion of u j1

±u j2
±u j3

±u j4
is a fourfold convolution of uniform

distributions, whereas the test based onT1 checks the distri-
bution of pairwise sumsu j ±uk. The test may not reject in the
case of heavy tailed distributions of amplitudes; the same
large values ofBj andCj are used for the original sample and
for the surrogates. We again would like to emphasize the
point that for both test statistics the nature of the test drasti-
cally changes by use of surrogate data critical values. Tests
for one-lag autocorrelation or deviations from normality are
transformed to tests on circular stationarity. We now briefly
want to explain why this change is more evident for tests
using even moments than for tests using odd moments. It can
be shown that

E*fT4sXN
* dg =

3c4

8 Fo
j=1

m

sBj
2 + Cj

2dG2

+
3c4

4 o
jÞk

m

sBj
2 + Cj

2dsBk
2 + Ck

2d.

Thus the test statisticT4 is corrected by a term that heavily
depends on the values ofBj andCj. On the other hand, odd
empirical moments have conditional mean zero. This follows
by symmetry of the distribution of surrogate data. Therefore,
here randomness of surrogate critical values are only caused

TABLE I. p, p1, andp2 for different test statistics and for different circular processes withN=256.

s j
2 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

e−j /m p 0.048 0.044 0.037 0.043 0.044 0.047 0.047 0.062 0.057 0.042 0.044 0.045

p1 0.044 0.001 0.000 0.031 0.008 0.026 0.011 0.025 0.014 0.010 0.028 0.028

p2 0.047 0.008 0.000 0.039 0.015 0.030 0.015 0.014 0.009 0.019 0.035 0.022

e−j p 0.048 0.049 0.055 0.046 0.050 0.049 0.047 0.037 0.049 0.052 0.048 0.066

p1 0.032 0.018 0.009 0.043 0.040 0.044 0.038 0.004 0.036 0.040 0.044 0.063

p2 0.036 0.020 0.004 0.048 0.042 0.047 0.042 0.018 0.038 0.040 0.047 0.048

IYsv jd p 0.049 0.053 0.043 0.040 0.054 0.039 0.054 0.039 0.054 0.051 0.046 0.046

p1 0.044 0.014 0.000 0.036 0.029 0.035 0.032 0.004 0.027 0.027 0.027 0.026

p2 0.046 0.012 0.000 0.047 0.026 0.047 0.029 0.017 0.024 0.028 0.030 0.015

TABLE II. p, p1, and p2 for different test statistics and for different AR(1) processes withN=256 and using surrogate resamples.Xt

=fXt−1+estd , estd,Ns0,1d.

f T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

0.05 p 0.049 0.054 0.043 0.051 0.045 0.051 0.051 0.053 0.055 0.048 0.038 0.057

p1 0.046 0.006 0.000 0.042 0.009 0.030 0.013 0.012 0.015 0.020 0.020 0.036

p2 0.048 0.004 0.000 0.042 0.016 0.030 0.013 0.011 0.012 0.024 0.034 0.030

0.99 p 0.421 0.061 0.071 0.070 0.059 0.065 0.060 0.121 0.058 0.057 0.208 0.013

p1 0.392 0.015 0.019 0.068 0.044 0.061 0.048 0.069 0.040 0.042 0.174 0.006

p2 0.023 0.005 0.000 0.049 0.036 0.047 0.039 0.000 0.033 0.036 0.013 0.028
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by the random nature of the conditional variance and condi-
tional higher-order moments of the surrogate data. This ex-
plains that these critical values are more stabilized. In gen-
eral, we do not have a clear intuition for which types of tests
the randomness of surrogate critical values are small and for
which are not. This is an important problem and requires
further research.

VI. CONCLUSIONS

In this paper we mainly concentrate on circular processes.
This has been done because for this class of models surrogate
data tests achieve exact levels. In simulations we have also
included noncircular AR(1) processes. We have shown that
surrogate data tests do not always consistently estimate their
critical values. Thus surrogate data tests may differ essen-
tially from the theoretical tests that reject if the test statistics
exceed their critical values. This means that the nature of the
test may change drastically by the use of surrogate data.
After the application of surrogate data, a test that measures

for a certain type of deviation from the null hypothesis may
look for quite different types of alternatives. An example is
the test statisticT4. This test statistic measures for heavy tails
of the amplitudes of the process. However, after using surro-
gate data, the test measures for deviations from stationarity.
In this respect, surrogate data tests differ from bootstrap
methods. For almost all bootstrap tests, under certain condi-
tions, it has been shown that they consistently estimate their
critical values. This implies that bootstrap tests achieve as-
ymptotically exact levels. They are asymptotically equivalent
to the tests that reject if the test statistics exceed their critical
values. These findings are supported by simulations pre-
sented in this paper. But the difference between bootstrap
and surrogate is not as drastic as expected.

Surrogate data tests achieve exact levels for all circular
stationary Gaussian processes. We conjecture that consistent
estimation of critical values may not be possible for all such
processes. Note that this class also contains all types of long-
range-dependent processes. In particular, we think that boot-
strap methods will work only for more restrictive classes.
This would imply that surrogate data can be applied for a

TABLE III. p, p1, andp2 for different test statistics for circular process withs j
2=exps−jd and AR(1) processXt=.05Xt−1+estd with N

=2048 using surrogate resamples.

s j
2=exps−jd , j =1, . . . ,m

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

p 0.054 0.054 0.053 0.049 0.058 0.050 0.061 0.063 0.055 0.057

p1 0.018 0.022 0.015 0.045 0.044 0.044 0.046 0.014 0.043 0.042

p2 0.013 0.020 0.013 0.047 0.037 0.045 0.037 0.002 0.039 0.037

Xt=0.5Xt−1+estd , estd,Ns0,1d

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

p 0.077 0.050 0.052 0.061 0.062 0.060 0.070 0.061 0.054 0.059

p1 0.074 0.002 0.002 0.046 0.014 0.028 0.018 0.010 0.009 0.014

p2 0.048 0.004 0.000 0.036 0.004 0.019 0.000 0.001 0.007 0.007

TABLE IV. p, p1, andp2 for different test statistics and for different AR(1) processes withN=256 and 2048 using bootstrap resamples.
Xt=fXt−1+estd ,estd,Ns0,1d.

N f T2 T3 T4 T5 T6 T7 T8 T9 T10

256 0.5 p 0.050 0.046 0.023 0.048 0.026 0.040 0.059 0.053 0.051

p1 0.007 0.001 0.001 0.013 0.004 0.013 0.014 0.006 0.014

p2 0.008 0.000 0.029 0.016 0.029 0.024 0.006 0.005 0.014

256 0.99 p 0.055 0.053 0.014 0.044 0.009 0.026 0.105 0.056 0.047

p1 0.009 0.003 0.000 0.005 0.000 0.002 0.069 0.009 0.003

p2 0.006 0.006 0.037 0.012 0.042 0.027 0.016 0.005 0.008

2048 0.5 p 0.046 0.059 0.053 0.051 0.052 0.050 0.060 0.055 0.055

p1 0.006 0.004 0.005 0.006 0.007 0.012 0.009 0.005 0.008

p2 0.002 0.000 0.003 0.007 0.007 0.013 0.001 0.001 0.005

2048 0.99 p 0.046 0.038 0.026 0.043 0.027 0.048 0.055 0.048 0.043

p1 0.005 0.000 0.000 0.002 0.000 0.002 0.013 0.007 0.002

p2 0.010 0.004 0.025 0.010 0.024 0.006 0.010 0.010 0.011
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much richer class of models. On the other hand, if more
restrictive models are appropriate it may be appropriate to
switch from surrogate data tests to bootstrap methods. Fur-
ther research is needed to specify when bootstrap is prefer-
able and which bootstrap method should be chosen.

In our study, we observe that the difference between sur-
rogate data tests and theoretical tests is present for some test
statistics and does not appear for some others. It would be
interesting to understand for which type of test statistics this
different behavior appears and under which conditions this
phenomenon disappears. This point requires further study.

Surrogate data can be used to obtain estimates of the
mean and variance of a test statistic. It is a common approach
to use these estimates to get a studentized version of the test
statistic and to use quantiles of the standard normal ort
distribution as critical values. Clearly this test does not have
an exact level, but for large enough sample sizes under regu-
larity conditions on the test statistic, one may expect ap-
proximately accurate levels. This may be shown by standard
applications of the central limit theorem for the conditional
distribution of the test statistic for surrogate data. These ar-
guments imply that direct calculation of critical values by
surrogate data or indirect calculation by use of surrogate data
mean and variance will lead to asymptotic equivalent tests.

The arguments could be extended to studies of the behavior
of both tests on the alternative. By use of the same arguments
we expect that both tests are asymptotically equivalent. A
more detailed study of this point is deferred to another paper.

In this paper, we mainly discuss stationary circular Gauss-
ian. This has been done because for this class of processes,
exact finite sample accuracy of levels holds for surrogate
data tests. In simulations we observe that for more general
classes of stationary Gaussian processes that are noncircular,
levels are only asymptotically correct. The classical method
of phase randomization to generate surrogate data is dis-
cussed in this paper. There are several other methods pro-
posed in the literature that are more appropriate for noncir-
cular processes. It would be interesting to extend our
discussion to these methods. In particular, it should be
checked if the described phenomena remain present for these
procedures.
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