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Change of the nature of a test when surrogate data are applied
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Surrogate data is a well-known method in nonlinear time series analysis and it has been widely used in
testing nonlinearity. Fourier transform-based surrogates are artificially generated time series which share the
linear properties of the observed series. They can be used for the generation of critical values for test statistics.
In this paper we will show that the variance of these critical values may be of the same order as the variance
of the test statistic itself. This changes the nature of the test because the test rejects if the test statistic divided
by the critical value exceeds 1. An example is a test for normality that checks higher-order empirical cumu-
lants. We will show that such a test is transformed to a teqicooulan stationarity.
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[. INTRODUCTION basic idea is to use surrogates for generating random data
) ) ) that only share linear properties with the observed time se-
Surrogate data testing is by now a well-establishedies and to compare measures of nonlinearity for the gener-
method in nonlinear time series analysis. In this paper weyted random data and the observed process. It is then argued
will discuss the application of surrogate data to testing. Wehat if there is no significant difference, then there is no
will show that the nature of a test may change drastically byreason to reject linear stochastic modeling of the data. Such
the application of surrogate data. After the application offindings can be used to discuss whether the data are gener-
surrogates, use of a test statistic that measures a certain typted by some chaotic system. Instead of considering the hy-
of deviation from the null hypothesis may result in a test thatpothesis that the underlying dynamics is chaotic, it has been
looks for a quite different type of alternative. This happensformulated the other way around. The null hypothesis is that
because surrogate data tests depend on two random quaritie data are generated by some linear stochastic process. In
ties: on the test statistic and on the quantiles estimated by tHearticular, the more restrictive null hypothesis, that the data
surrogate data. In most other resampling methods, the esfiollow a Gaussian-linear stochastic process, has been consid-
mated quantiles asymptotically stabilize. Then, the stochastigréd by several authors. For such a null hypothesis, different
performance approximately depends only on the stochastf€st statistics ha\_/e been used. Typically, test statistics have a
distribution of the test statistic. But we will see that in the diréct interpretation, e.g., they may measure a distance from
case of surrogate resamples, this does not hold. This is ﬂﬁe null hypothesis by some empirical quantity. If this guan-
main point of this paper. In particular, we will argue that it is 'y S|gn|f|ca2tly drllﬁers frgm 0 th?n ghe null hyp'othes,ls IS
not sufficient only to study the distribution of the test statisticreJeCtEd' When the distribution of the quantity is constant

. . “oyer the null hypothesis, then the null hypothesis is rejected
to analyze surrogate data tests. One has to consider the JO|B¥ a level a test if the quantity exceeds the

distribution of the test statistic and the surrogate Cl’ltlca|1_a quantile of this distributior(“the critical value). If a

value to und.e_rstand when th? test statistic is Iarger. than th@st statistic is nonpivotal, its distribution varies over the null
surrogate (,:”t'cal value. In' th's paper we will do this for a hypothesis. Then a classical approach is to approximate this
series of dlﬁ?rent test statls,t,|cs. N distribution by a normal distribution with estimated variance.
The term “surrogate da_ta was first mtroduc_ed[th]/, t_)Ut .__Another more recent approach is based on resampling. Arti-
the basic idea appeareq n a number of garll_er DUbI'C.at'Onﬁcial data are generated th@pproximately follow a fitted
(see[2—4)). The method i3] is called multivariate scaling stochastic model from the null distribution, and the distribu-

analﬁls&s. A-Ejrc]j'e' melthgd of surro.?a.te” data is a dresadm[:;]hngon of the test statistic is approximated by the distribution of
metho | ltional data are art|f|C|a y generate anh the%he artificial data set. It is proved if5] that surrogate data
are used to get an impression of a test statistic on a hypothy o mhjing leads to valid tests for the case of circular sta-

esis. The classical algorithm is based on Fourier tlransfor onary Gaussian processes: for all choices of test statistics
(FT) of the data. One computes the discrete Fourier trans

. one gets a test with exact level This result has been used
form (DFT) of the data, randomizes the phases, and the g

) h f N the li hi hod is al argue that for(noncirculay stationary processes one
Inverts the transform. In the literature, this method Is also, opjeyeg approximately correct levels for surrogate tests if

known as phase scrambling or Fourier bootstrap. We call ifj,q test statistic does not heavily depend on boundary values
FT-based surrogates or simply surrogates. A_d|sg:u55|on CHt the time seriegsee[5]). We will give a short outline of the
be found in Sec. ”.‘ The most prominent appllcauon_ of SUrpasic arguments in Sec. lll. However, we will see that these
rogate data is testing for nonlinearity of a time series. Theresults do not imply that surrogate data consistently estimate
the critical values of the test statistic. A surrogate data test
strongly differs from the test that rejects if the test statistics
*Email address: emammen@rumms.uni-mannheim.de exceeds its critical value. A detailed description and discus-
"Email address: sw_nandi02@yahoo.co.in sion of this fact can be found in Sec. IV. This will be done by
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simulations and some asymptotic calculations. In Sec. V, a By construction, the surrogate daxd preserves the ob-
detailed technical discussion on two test statistics is givenserved sample mean and periodogram values, that is
Concluding remarks will be made in Sec. VI. -
X=X, Ix (o) =lx(wp), j=1,...N.
II. SURROGATE DATA

. It also preserves the circular autocovariances given b
The method of surrogate data was first suggestefilhby P ¢ y

They proposed this method to check the statistical signifi- 1 R — N _ _
cance of a test statistic. Two distinct approaches, the typical NE (X = X) K= X) = NE (Xi = X) Ker = X) =Ty
realization approach and the method of constrained realiza- 1 =1

tion, were compared if6]. The typical realization approach \yhereX,,\ =X, X=Xt

model equations are fitted from the data and are used for thgjiven the original samplXy=(Xy, ... Xy)]. A processX}
generation of resamples. The constrained realization methqd ircular of indexN. if Xjn=X; for each =j<N and

was proposed for the implementation of test procedures. 'Bositive integerk. This impIJies that
this approach the fitting of model equations is avoided. The
principal idea is to generate data that are consistent with the E (X)) =X
hypothesis under consideration.

We now shortly review the method of generating surro-and for I=q<p=N,
gates based on Fourier transforms. Suppose a data vector . e — . —
Xn=(X4, ..., Xy) is generated by a stationary Gaussian pro- Cov (Xp,Xg) = E (X, = X)(Xq = X) = pqc-
cess. In this paper, following statistical language, we alway$jere E* denotes the conditional expectation given the origi-
understand a stationary Gaussian process as a statiimary na| sample. Similarly, Cdvdenotes the conditional covari-
ear Gaussian process. A process is called Gaussian if its fulyce.
dimensional distributiortand not only the marginal distribu-  The finite-dimensional conditional distributions of FT-
tion of an amplitude at one fixed time pojns Gaussian. pased surrogates are asymptotically Gausgidth autoco-
Then, stationarity and Gaussianity imply linearity, see Secyariances equal to the observed circular autocovariances and
5.7 in Brockwell and Davig7]. So, linearity need not be ith mean equal to the empirical mean of the observed pro-

N 1

explicitly mentioned. . _ . cess. This follows under mild conditions on the spectral

The periodogram functioty (), in terms of DFT, is de-  gensity function and by standard asymptotic arguments using
fined as follows: (2) and(3), with ¢ replaced byd]. The surrogates have by
N 2 definition a symmetric distribution. This implies that all ex-

|X(w):2i > X, expl—iwt) :|§XN(“’)|2- (1)  Pected odd-order central moments of the surrogate series

7N |5 vanish, as is the case for the original data set. However,

. ) ) higher-order even central and noncentral moments are not
Given the sample sizH, the DFT at the Fourier frequency ,reserved and they do not match with the corresponding em-
wj=2mj/N, j=1,... N can be written agin polar form  nircal moments of the observed series. For more results on
§xN(wj):V|x(wj) expif;), where 6, is the phase. Then, us- higher-order moments, sé8].
ing inverse FT and some simple algebxgs can be recov-

ered from DFT's as lll. ACCURACY OF LEVELS OF SURROGATE TESTS
m
v 2m PR There were some discussions on the validity of surrogate
X=X+ /| — 2 2VIx(w;) cowit+6;), t=1,...N, . s
! N 12:‘1 Vix(ey) codwit+6) data tests. Asymptotics for the distribution of surrogate data

5 were studied by9]. In [10], (FT-based surrogate data were
2 compared with some other resampling schemes for time se-

for odd N and whenN is even ries. Higher-order moments and cumulants of surrogate data
" for a wide range of time series models were comparg@]in
v 2w — It was done for the standard method of phase randomization
X=X+ \/WE 2\Ix(w))coswjt + 6)) [1] and for the rescaling method0]. These results were

applied to develop diagnostic tests to check convergence of
2 Markov-Chain Monte Carlo algorithms. The power of surro-
+ W'X(‘”N/Z)COS(WH On2), t=1,...N. (3)  gate data tests was discussed[14] and [12], and it was
argued that rejections may be caused by the only reason that
Here we definem=(N-1)/2 when N is odd andm=(N  the assumption of stationarity is violated. Our paper is an
—2)/2 whenN is even. attempt to present detailed discussions of these findings. The
Surrogate data are generated by replacing the phasealidity of the method of(FT-basedl surrogate data testing
01,65,... by random valuesﬂ’;,a;,... in (2) and (3). Here  was considered if5]. There, it was shown that surrogate
6,...,0, are independent and identically distributed data tests achieve exact levels for circular stationary Gauss-
U[0, 2] and independent cﬂf\,,z (whenN is even, whichis  ian processes. In this section we expose his approach and
0 or 7 with a probability of 0.5. discuss some conclusions. We argue that the surrogate data
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method is the only valid method for the full model of circular PAT =k (9]=ELPJT =k, (9|S]}
stationary Gaussian processes and that there exist alternative B _
resampling schemes only for more restrictive models. We = EP[T=k.(S)IS]}

conjecture that under suitable conditions these findings carry =EAP[T =k,(S)|S]}
over asymptotically to noncircular models. A circular process B
is Gaussian iXy=(Xq, ..., Xy) is a multivariate Gaussian. A -a.

Gaussian circular process of indiis stationary if theX's  Thus, surrogate tests achieve a correct level for all test sta-
have an identical mean and the covariance matriX,is a {istics.
circular matrix. Suppose now that one wants to have a test with constant

For circular stationary Gaussian processes surrogate daf@se| « on a subse®,C @, of the null hypothesis, i.e.,
tests achieve the correct level. This holds for all test statis-

tics. The rejection probability is constant and equal to the PAT>k,)=a forall 6e 0,
level. Such tests are called similar. On the other hand, th
following controversial statement holds: If for a fixed test
statistic the critical values should be chosen, such that the EfP/[T>k,|S]}=PyT>k,)=a forall 6 c 0.
test becomes simildi.e., has constant rejection probabijity _
then the only way to achieve this aim is by calculating the'Vrité NoW u(S=P[T>k,|S]. Note thatu(S) does not de-
critical values by the method of surrogate data. These twhend oné becauseS is a sufficient statistic. Thus we have
results are due tfb]. The main step to prove these results isthat
the following fact: For a Gaussian circular stationary pro- EU(S) =a forall 6e 0
cess, sample mean and circular sample autocovarigoces .
equivalently sample periodogranare sufficient statistics. If the family of distributions of S (for 6e ®) is “rich
This means that the conditional distribution of the procesgnough,” this implies that the function is constant and
given these statistics is fixed and does not depend on thegual toa. We now give a sufficient condition df, for this
parameters of the process. Furthermore, this conditional digmplication. Suppose that the parameteis given by the
tribution is the distribution of surrogate data. For an expla-meanu of X; and by the autocovariancegk)=E[(X;—u)
nation on why these two statements imply the resultlshf X (Xux—w)] for 0<k=<N/2. Then it can be shown that the
we briefly recall some facts from the theory of similar tests.implication holds ifG)g contains a nondegenerate rectangle.
Let « be the size of a tesb(X), whereX is the vector of ~Suppose that this holds. TheR(T" >k,|S)=P(T>k,|9
observations. The test is similar E, #(X)=a for all § =u(S=«. Thus the only way to calculate exact critical val-
e 0, where®, is the set of parameters on the null hypoth- ues of a test statistic with a constant level is given by the use
eses. Similar tests can be easily constructed if a sufficieraf surrogate data. So, at first sight, there seems to be no
statisticS is available. LetP*={P,, § € O} be the family of  alternative to surrogate data. However, there are alternatives
distributions of X on the hypotheses. Then the conditionalif we relax our assumption on the level of accuracy. If we
distribution of X given S does not depend on the underlying only require that the level is asymptotically equaldcand
parameter ¢ ®, becauseS is sufficient. In particular, that this asymptotic relation only applies for a subclass of
E[ #(X)| S=s] does not depend of Then any test satisfying short-range-dependent processes we conjecture that a much
more rich class of resampling methods has asymptotically
E[4(X)|S=s]=«a (4)  correct levels. Note that for short-range-dependent processes
v(k) converges to O exponentially fdr—co. This violates
the condition thaﬁ)g contains a nondegenerate rectangle.
In this paper we discuss if the randomness of the surro-

Fhen

(except on a set of probability measure 2ei® similar on

PX. This immediately follows from
_ _ te data quantilk,(S) changes the nature of a test. We will
E[¢(X)] = EEL$(X)|S] = a. ga ol Char .
[#(0]=EE$(X)|S] = a give examples where this is the case and where this does not
A test satisfying(4) is said to have Neyman structure with happen. We conjecture that a discrimination between these
respect toS. two cases could be based on the checK i (asymptoti-

Let us consider a test StatlStTG:f(X) where now, on the Ca”y) inOtaI. A test statistic is called inOtal if its distribu-
null hypothesesX is a circular stationary process. The basic!ion does not depend on the underlying model parameter. By
idea of surrogate tests is to compdrevith T'=f(X"), where ~ construction, surrogate data have the same unconditional dis-
X" are surrogate data. We now chodSeas the tuple of tribution as the original sample. Therefore, also the pivotal

sample mean and sample circular autocovariances. On tHgSt statistic calculated for the surrogate data has the same
hypothesis of circular stationary processes this is a sufficier{nconditional distributior{not depending on the model pa-
statistic and, givers, the statisticST and T* have the same rametey. The distribution of the sufficient statist®&depends

e dictrib it S
conditional distribution, see above. For a givms, choose ~ On the parametes. Let us denote this distribution b,
now k,(S) such that Furthermore, we writeP, for the distribution of T. If T is

pivotal, PT=P£ does not depend o#. The conditional dis-
P[T =k,(9)|S=5s]=a. tribution of T given S defines a Markov kernd that does

not depend ord becauseS is sufficient. We can writ&K P$

Then =PT for paramete®. Suppose now that the famil?? is “rich
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enough.” Then all elements of the family are mapped onto N-1 _ _ N _
the same measur’. Typically, this only holds ifK is de- Ti==2 X = X) Ky = X2, To= 2, (X = X)35°,
generated, i.e., the conditional distribution Dfgiven S=s Nz =1
does not depend om Thenk,(S) also does not depend & N
i.e.,k,(9 is nonrandom. On the other sideTifis nonpivotal, B NAX; > Xiyq} 1 T
P}, depends om and it cannot be tha is degenerated. Then 3~ N o Ta= Nz (Xe=X)",
at least for somey, the quantilek,(S) must depend ors. B
These considerations motivate the conjecture that the change LN LN
of the nature of a test by surrogat.e data is moderate in case of Te= = (X = X)5 Te==> (X - X)°,
approximately pivotal test statistics. Nz N1
IV. SOME TESTS AND THEIR SURROGATE VERSIONS N
This section contains our major findings. We will discuss T7= fl]E X=X), Tg= maxQ(7),
how the nature of a test changes due to the application of =1
surrogate data critical values. We will do this for a class of N 5
test statistics. We start by considering the following class of o) PO O D )
circular processes: = 32
P [E{\‘:ﬁl(xt—'r_ Xt)z]
m
X;=A+c2 B +Cl codwt+6), t=1,...N, (5 N-2 2 N-4 4
- _ — 1 —
! T9—NE [T X=X, TlO_NE [T X=X,
t=1 k=0 t=1 k=0

where A~N(0,0?), B;,C;~N(0,09), 6~U[0,27] and A,
B;, C;, and ¢; (with j=1,... m) are independent. Further- _ _
more, w; =2} /N, c=\27/N, m=(N-1)/2, if N is odd and T1=C\(r),  Tyo=log[Cy(r)}/log(r),
m=(N-2)/2, if N is even. Note that foN odd all circular  \yperes2=N-1=N (Xt—f)z and

stationary Gaussian processes with mean zero can be repre- =

sented in the form5) [see Eq.(2)]. For evenN the last Sl (X! =Xl <)
additive term in(3) is put equal to zero. Typically, this would Cn(r) = N(N—1)/2
result in an asymptotically negligible change for most circu-
lar stationary Gaussian processes with mean zero. denotes the correlation sum. Hedrés the indicator function
For X, defined in(5) we have and [X[=max/XJ. The vector X{=(Xi_(,-1d
2 0 Xi—(r-2)d» -+ - X;)T belongs to the phase space with embedding
(B + Cy) ! : . L
I(w)=——%, k=1,...m and Iy(ony =Ix(wy), dimensiony and the delay timel. We use delay timel=2.
4 Simulations were done for different embedding dimensions.
The results turned out to be similar and we report the results
E(X)=0 and Co¥X,Xg) =rpq+ 'N-(p-q) only for embedding dimension=4.
The test statisticT; has been added for theoretical rea-
1<g<p=N. sons. Its use would only make sense for testing if the one-lag
autocorrelation exceeds a certain level. For our hypothesis
Here that contains processes with autocorrelations of all values
N-k between -1 and 1, this test statistic makes no sense. But we
M= NE (xt_f)(xﬁk_f) will see how thg method of surrogate Qata transforms this
t=1 test into a meaningful test. The test statisfigsand Tg have

been proposed as measures of time asymmetry. It has been

is thek-lag sample autocovariance. s : CO
X . . . argued that time asymmetry gives a strong indication for
F_or_ the process_defmed 5) we consider dlﬁerent test nonlinearity. The statistic¥, and T,, ...,T; have been pro-
statistics, namely first-lag sample autocorrelation, measureg

of asymmetry, higher-order central moments, higher-orde osed as test statistics for normally, ..., T; could be re-
y Y, hig » g laced by studentized versions, e®,/o*. This would not

joint central moments, and higher-order gumulants. O.thechange the surrogate test becadgehas an identical value
measures ha\_/e been proposed for c_hecklng_ the nonll_neﬁ;r the original data and for the surrogate data, i.e
chaotic behavior of the generator of a time series. In particu- S

lar, correlation dimension and maximum Lyapunov exponenty 'St (%= X)?=N"Zi,(X; —X')2 The test statisticE, and

are widely used. But these statistics cannot be calculated b{zo are joint higher-order central moments and they are pro-
an automatic procedure, and for this reason, it is difficult toP0Sed to test the nonlinearity of the dynamics. We have also
implement them in a simulation study. As an alternative weconsidered other higher-order cumulants aga| but they
have considered correlation sums. They are defined &€ not reported here.

samples analogous of correlation integrals and can be com- In our simulation study we generated data from maég|
puted by an automatic scheme. The following test statisticéor different choices obrj: oj,)=exp~j/m), oj,=exp-j),
have been used in our simulation study: a-f(g):IY(wj), wherely(w)) is the periodogram function a;
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of one realization of an autoregressii#®R) processY; of 8 ' ' ' T ' '
order 2. Hergj=1,... mandm=(N-1)/2 if N is odd and 2k M 1
m=(N-2)/2, if N is even. We always choos€=1.0. The RO
Gaussian random variables and uniformly distributed ran-
dom variables are generated by using the routines given ir
[13]. Note that for the processes generated by usifig
=exp(-j), the autocorrelation very slowly decreases, e.g., the
autocorrelation betweex, andX,, is approximately equal to
-0.4. The time series generated bf(3)=ly(wj) is circular, e -
but at the same time, the autocorrelation function matches
that of the underlying AR) process. We have considered
several stationary Gaussian &R processes, but we will re- 0 o3 oa 0a o4 05 o5 06 oes
port here only fory,=1.5Y,_,—.55Y,_,+e,. For generating the T,

surrogates, we computed the periodogram val(@sthe
DFT), atwj=2mj/N, j=1,... mwith the fast Fourier trans-
form algorithm. We used sample sikke=256. For each simu-
lated Xy, 1000 surrogate data vectc)(i, were generated and
for each of these 1000 surrogate data vectors we calculate th
test statistics'l'j(X’,;) for j=1,...,12. The(l-a)-th quantile

of T,-(X’,;) is denoted byk;,. This whole procedure is repli-
cated 1000 times. This gives 1000 values of the critical val-

uesk;, and 1000 values of the test statisTigXy). The (1
—a)-th quantile of the 1000 values of the test statistic is
denoted bykj,. This is an approximation for thél -«)-th
quantile of the distribution offj(Xy) and is calculated by
Monte Carlo calculations. In the following discussions, we
will neglect the(random inaccuracy in the Monte Carlo cal- ® Quantiles of T, based on surrogates
culation ofk;,. We compare two tests: the surrogate data test ) _

FIG. 1. Plot of the histogram of the test statistig(upper ploj

that rejects if Tj(Xy)>kj, and the test that rejects if 4hq piot of the histogram of 95% quantiles based on surrogate data
T;(Xn) >kj,. Clearly, for real data the second test is notower plog.

available because it requires knowledge of the distribution of
the test statistic. We have included this test for theoretical N i ,
reasons. One may conjecture that these two tests are asyniffS: ThusK;, is not asymptotically equivalent to the true
totically equivalent: the probability that one test rejects and'onrandom quantilekj, and the surrogate data test
the other one accepts converges to zero. If this would be tru&j(Xy) >k;, may be quite different from the theoretical test
(for the hypothesis and for the alternativewould allow for  that rejects ifT;(Xy) > k;,. So in this case, for an understand-
a very simple understanding of the surrogate data test. ling of the surrogate test it does not suffice to study the dis-
particular, it would give simple asymptotic formulas for the tribution of the test statistic alone. Here we have to look at
power function of the surrogate data test. We will see that irthe joint distribution of the test statistic and of the surrogate
general the asymptotic equivalence of the two tests does natitical values. Only an understanding of the joint distribu-

hold. For many cases the surrogate data esti,{%tef the tion enables us to study when the test statistic is larger than
critical value significantly differs from the true critical value the surrogate critical value. In particular, it is clear that in
k:,.. In this respect surrogate data tests show a distinct behathis case the surrogate test strongly differs from the test that

ior as compared to other resampling tests. For a large class B#€cts if the test statistic exceeds its critical value.

models, and for other resampling methods, one hasAIqt;at fer;er?kc)(leeslb%ﬁs;\ ?ﬁ;a'tl\ig ?g;;v';;\'oog;haengL:czl?tt';astt'\/;;'f'
andk;, are asymptotically equivalent. Histograms of the test :

statisticsT;(Xy) and the corresponding surrogate critical val- tisticsT; —Ty, The differences are measurediyp;, andps,

N which are defined as follows:
uesk;, for «=.05 are plotted in Figs. 1-7 for test statistics
T3, T4, Tg, Tg, TlO! Tlll a.nd T12. Th|S iS done fOI’O'jZ(l)
=exp(—j). Similar plots with other test statistics are not in- N{T(Xy) > k )
cluded to avoid repetitions. For some test statistics, the criti- = 2N 12
cal values concentrate around a fixed vatudor example.
Thus in this case, the surrogate test will show a similar be-
havior as the test that rejects if the test statistic exceeds the
valuec. On the other hand, fof,, T, Tg, T11, @and Ty, the A
range of the values of the test statistic is of the same order as Py = NATIXn) > Koo T(Xn) < Ko}
the range of the surrogate data estimate of their critical val- 1000 ’

No. of realizations
oy
T
1

50 -

NO. od recanzanons
w
f=1
T

I ] ! 1 ! L
0.3 0.35 04 045 0.5 0.55 0.6 0.65

=°
N
h

1000 '
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FIG. 2. Plot of the histogram of the test statistic(upper ploj FIG. 3. Plot of the histogram of the test statisTig(upper plof

and plot of the histogram of 95% quantiles based on surrogate dat@,j jot of the histogram of 95% quantiles based on surrogate data
(lower plob. (lower plot.

NA{T;(Xp) < &ijj(XN) > Ko} Our simulations only show this for the hypothesis. By a stan-
p2= 1000 . (6) dard asymptotic argument this can be extended to points of
the alternative. Neighbored points of the alternative, i.e,.

The fractionp gives an estimate of the level of the surrogatePCiNts for which the Neyman-Pearson test has nontrivial
data test. Because the test achieves the correct level for 4PWer. are also called contiguous. If a statiSicconverges
test statisticsp should be equal ta.. So the different values © Z€ro under a contiguous point of the alternative, then it
of p are only caused by simulation errors. They are reportedUSt alSo converge to zero on the hypothesis. This is a cen-
here for better interpretation qf, and p,. The fractionsp; tral argument often used in asymptotic test theory. Applica-
and p, count the relative number of cases where one testion with Sy=(kj,—kj,)/[varT;(Xy)}]** shows that this
rejects and the other one accepts. Wipgrand p, are large  quantity cannot converge to zero on contiguous alternative
and almost equal to the size of the test, then this implies points (because otherwise it must also converge to zero for

that the sets{TJ-(XN)>kja} and {T;(Xy)>k;,} are almost points pf the hypothes)'sThis.impIies that the two tests bg-
nonoverlapping. When the two probabilities are small thehave dlﬁe_ren'gly also on contiguous points of_the alternative.
above two sets overlap in a large area. Figures 1—7 and Table All realizations of the processes, so far discussed, are of

| show that the considered tests behave quite differently. Fo€"9th N=256. For such a small data size one may expect
Ty, Ta, Te, T11, and Ty, the variance of the surrogate quantiles large variations of the test statistics. It may be argued that the

is of the same order as the variance of the test statistic itselfl€Scribed phenomenon is an effect due to small sample size.
This explains the large values pf andp, in Table I. For the N Many applications, one comes across very large data sets.
other test statisticsp, andp, are smaller, but not negligible. Due to this reason, we have repeated simulations for longer

. . . . . 2
For the test statistid’ with o7, the quantiles based on time series. We consider circular procegs) with o

surrogates concentrate at one valyot is not provided =exp(—j) andN=2048. The results are reported in Table III.
9 P The values ofp; and p, are not close to zero. This implies

herg. Thenk;,=k;, and it holds thap, =p,=0. ButforTs, in  that surrogate data tests do not consistently estimate their
the case of long-range-dependent processes the valuygs of critical values. We conclude that the same findings, as above,
andp are nonnegligible. We conclude that in many cases thgso apply for large data sets. The tests based on surrogate re-
testsT;(Xy) >k;, and Tj(Xy) >k, behave quite differently. samples may behave quite differently from the theoretical
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FIG. 5. Plot of the histogram of the test statisTig (upper ploj
d plot of the histogram of 95% quantiles based on surrogate data
(lower plof.

FIG. 4. Plot of the histogram of the test statisTi¢(upper plog
and plot of the histogram of 95% quantiles based on surrogate da
(lower plot).

S - S ior was claimed in theoretical studies; e.g., in a lot of papers
tests that reject if test statistics exceed their critical values.On bootstrap for a wide range of applications it was shown
e e B i e booisira st s asy oy cualent o e th.
. b . 9 oOreétical test that rejects if the test statistic exceedguits
achieve szact levels. We now present simulations for arl]mown) (1—a)-th quantile. This would imply a performance
(noncirculay AR(1) process: of bootstrap tests that is qualitatively different from that ob-
X=X 1 +e&, €~N(0,1), (7)  served here for surrogate data tests. We checked this by a
. : , ) small simulation. For autoregressive processes we imple-
with $=0.5 and 0.99. We have made simulations for theyanteq a parametric bootstrap method. We have excluded
same test statistics as for the circular processes. The resulﬁ T,5, andT,,, as no proper bootstrap procedure was found
for different AR(1) processes with surrogate resamples argq, esting using these test statistics. Resamples are generated

given in Table II. We observe that also for such processes, oy the fitted autoregressive process and they are used to
andp, are not negligible. For noncircular processes, no the-

ical It ab . 4 fini o lovel calculate test statistics denoted*q*y Bootstrap tests work in
oretlc?kresp te|1 out asymptotic an |n|rt]e—s§1mp| € level accuy slightly different way than surrogate data tests. The boot-
racy (like circular process@sexists. In the simulations, we strap resample€X,, ...,X\) cannot directly be used for

O;Jser;/r? thf\élgvilsta}re alp_prOX|mate_Iy CErrectbfor thebproce?ecking the significance of; because the bootstrap resa-
(7) with $=0.5, but level inaccuracies have been observe ples do not fulfill the hypothesis of the test statistic; e.qg.,

for most of the test statistics whefr0.99. This implies that ¢ . =3, we do not have that the conditional mean of
some restrictions on the test statistics and/or models are r%—(:>xi*+l} is equal to 0.5. For this reason we follow the

quired for noncwcular processes. Also f¢"=.0'99’ we get usual bootstrap approach based on prepivoting. The boot-
that p; and p, are quite large. For longer time series with . o ;
N=2048(see Table I} this effect does not disappear. Thus, Strap test rejects {T; - 1/ 5 =kj,. Here 4 =E[T;] in case
again, we conclude that surrogate data tests are quite diffeELT;] is known, i.e., forj=2,3,5,7,9, and 10. Fgr=4, itis
ent from the theoretical test that rejects if the test statisti@stimated ag;=36* and forj=6, the termy; is put equal to
exceeds its critical value. 156°. The normings’ substitute the usual studentization that
Surrogate data tests achieve finite-sample level accuracié$ known to measure a higher-order accuracy of bootstrap.
for all circular stationary Gaussian processes. As mentionebiaturally we putl=0 for j=3; 1=3 for j=2,9; =] for j
above, for other resampling methods a quite different behav=4, ...,7; and =5 for j=10. The quantilé<}’a is calculated
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by bootstrap resampling. It is the conditional quantile ofof surrogate data, tests based Bpand T, look for quite
[T;-E'(T))1/5"!, whereE" denotes the conditional expecta- different types of alternatives. We have discussedTfoand

tion given the original sample andl' is the empirical vari- T, but similar arguments also apply for other test statistics.
ance of a bootstrap sample. FHor8 we used the same test Because the circular sample autocovariance is preserved for
statistic as above. In the resampling we calculaled surrogate data we have that

=max.Q"(7), whereQ (1 =Q'(7)-E'Q’(7) andQ’(7) is de-
fined asQ(7), but with the original sample replaced by a
bootstrap sample. The results of the simulations with
=256 and 2048 are summarized in Table V. The level accu-
racy is slightly worse compared to the performance of surro- =Ty(Xp) + E(XL _f)(x*l -X)672,
gate data. The relative values @f and p, are slightly N

smaller than for surrogate data if one corrects for level inac-

1 _ _
Ta(Xy) + N(XN - X) (X, = X)572

curacies.(Note thatp+p,—p;=0.05 and for this reasop; This gives o m

and p, cannot vanish ifp—0.05 is large in absolute valye. [Ty(Xy) - T4(X 152 = ¢ 2 (B2 + C2)V2(B2
. . N N N j j k

Thus the simulations support the conjecture that surrogate j k=1

data testing has more accurate level accuracies but may
change the nature of the test. But the differences seem not so
large as may be expected from the bootstrap literature.

+ )M cod ] )cog wy + 6)
- cog6,)cog wy + G ].

The surrogate data test rejects if tfie-«)-th quantile of
the conditional distribution of this differenagiven B;, C;,
andg; for j=1,... m) exceeds 0. This test has exact lewel

In this section, we discuss why surrogate data tests baséddr the hypothesis thatconditionally givenB; and C; for |
on test statisticsl; and T, transform to tests for circular =1,... m) the variablesé,, ... ,6,, are conditionally inde-
stationarity. T, was proposed to test whether first-lag auto-pendent with uniform distribution of0,2#]. It could be
correlation exceeds a certain value, wherBawas proposed argued that this is a test that measures deviations from the
to measure deviations from normality. But after applicationhypothesis of circular stationarity.

V. DETAILED DISCUSSION OF TEST STATISTICS
T,AND T,
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TABLE I. p, p;, andp, for different test statistics and for different circular processes Wit256.

ot Ty T, Ts T, Ts Ts T Ts To T  Tu  Tp

g iim p 0.048 0.044 0.037 0.043 0.044 0.047 0.047 0.062 0.057 0.042 0.044 0.045
p1 0.044 0.001 0.000 0.031 0.008 0.026 0.011 0.025 0.014 0.010 0.028 0.028
P2 0.047 0.008 0.000 0.039 0.015 0.030 0.015 0.014 0.009 0.019 0.035 0.022

el p 0.048 0.049 0.055 0.046 0.050 0.049 0.047 0.037 0.049 0.052 0.048 0.066
p1 0.032 0.018 0.009 0.043 0.040 0.044 0.038 0.004 0.036 0.040 0.044 0.063
po 0.036 0.020 0.004 0.048 0.042 0.047 0.042 0.018 0.038 0.040 0.047 0.048

Iv(w)) p 0.049 0.053 0.043 0.040 0.054 0.039 0.054 0.039 0.054 0.051 0.046 0.046
Py 0.044 0.014 0.000 0.036 0.029 0.035 0.032 0.004 0.027 0.027 0.027 0.026
P> 0.046 0.012 0.000 0.047 0.026 0.047 0.029 0.017 0.024 0.028 0.030 0.015

Similar arguments apply for the test statisTic Again, by d(jrinjaia) = [(Bj2 + cj?)(Bj2 + C,-z)(sz + Cjz)(sz
construction, the surrogate data test rejects with probalility T
if (conditionally givenB; and C; for j=1,... m) the vari- +Cjz4)]l’2.

ablesé,, ... ,6,, are conditionally independent with uniform ) ] ] ] o
distribution on[0, 27]. No further restriction on the distribu- SO in particular this surrogate test checks if the distribu-
tions of B; and C; for j=1,... m is needed. In particular, tion of 6; +6;,+6; +6;, is a fourfold convolution of uniform

that this surrogate data test does not look for deviations frorRution of pairwise sums; + 6. The test may not reject in the
normality. Again, it is a test for circular stationarity. This case of heavy tailed distributions of amplitudes; the same

may become also clear by the following representation:

cA
8 p

i1*iotiatia=N
+6,t 0,—4) - cos(0j1+ 0]-2 + 0]-3 + 6j4)]
j1+io*iz—iac{ON}

X[cos(6), + 6;,+ 6;,~ 6;,) - cos(f)}l

Ta(Xn) = T4(X:\1) = d(jlyjz,j37j4)[005(9jl +0,

C4
+ —

d(j1j2.J3.ja)

+ 0j2+ 0]'3_ 0]4)]

3c* L
uire 2 duj2jsidlcos(d;
j1*io—iz—ia=0
+ 01 - 01 - (9] )
—wq%+%—%—@m
where
TABLE II.

= X1 +e(t), e(t) ~N(O, D).

large values oB; andC; are used for the original sample and
for the surrogates. We again would like to emphasize the
point that for both test statistics the nature of the test drasti-
cally changes by use of surrogate data critical values. Tests
for one-lag autocorrelation or deviations from normality are
transformed to tests on circular stationarity. We now briefly
want to explain why this change is more evident for tests
using even moments than for tests using odd moments. It can
be shown that

. . 3t O 2
ETXW]= 45 > (B7+C)
j=1

3¢’ 2, A2\ p2 ., (2
+ 42(Bj+cj)(Bk+Ck)-
j#k

Thus the test statisti€, is corrected by a term that heavily
depends on the values Bf andC;. On the other hand, odd
empirical moments have conditional mean zero. This follows
by symmetry of the distribution of surrogate data. Therefore,
here randomness of surrogate critical values are only caused

p, p1, andp, for different test statistics and for different AR processes wittN=256 and using surrogate resampl¥s.

¢ T1 T, T3 T4 Ts Ts T7 Tg To Tio Tt T2

0.05 p 0.049 0.054 0.043 0.051 0.045 0.051 0.051 0.053 0.055 0.048 0.038 0.057
p1 0.046 0.006 0.000 0.042 0.009 0.030 0.013 0.012 0.015 0.020 0.020 0.036
P> 0.048 0.004 0.000 0.042 0.016 0.030 0.013 0.011 0.012 0.024 0.034 0.030

0.99 p 0.421 0.061 0.071 0.070 0.059 0.065 0.060 0.121 0.058 0.057 0.208 0.013
p1 0.392 0.015 0.019 0.068 0.044 0.061 0.048 0.069 0.040 0.042 0.174 0.006
P> 0.023 0.005 0.000 0.049 0.036 0.047 0.039 0.000 0.033 0.036 0.013 0.028
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TABLE IIl. p, p1, andp, for different test statistics for circular process w&tﬁ:exq—j) and AR1) processX;=.05%;_;+e(t) with N
=2048 using surrogate resamples.

O'jZZEXF(—j), ji=1,...m

T T, T3 T4 Ts Te T7 Tg To Tio
p 0.054 0.054 0.053 0.049 0.058 0.050 0.061 0.063 0.055 0.057
p1 0.018 0.022 0.015 0.045 0.044 0.044 0.046 0.014 0.043 0.042
P> 0.013 0.020 0.013 0.047 0.037 0.045 0.037 0.002 0.039 0.037

X;=0.5X_1+e(t), et)~N(0,1)

T T, T3 Ts Ts Te T7 Tg To Tio
p 0.077 0.050 0.052 0.061 0.062 0.060 0.070 0.061 0.054 0.059
p1 0.074 0.002 0.002 0.046 0.014 0.028 0.018 0.010 0.009 0.014
po 0.048 0.004 0.000 0.036 0.004 0.019 0.000 0.001 0.007 0.007

by the random nature of the conditional variance and condifor a certain type of deviation from the null hypothesis may
tional higher-order moments of the surrogate data. This extook for quite different types of alternatives. An example is
plains that these critical values are more stabilized. In genthe test statistid,. This test statistic measures for heavy tails
eral, we do not have a clear intuition for which types of testsof the amplitudes of the process. However, after using surro-
the randomness of surrogate critical values are small and f&ate data, the test measures for deviations from stationarity.

which are not. This is an important problem and requiredn this respect, surrogate data tests differ from bootstrap
further research. methods. For almost all bootstrap tests, under certain condi-

tions, it has been shown that they consistently estimate their
critical values. This implies that bootstrap tests achieve as-
VI. CONCLUSIONS ymptotically exact levels. They are asymptotically equivalent
to the tests that reject if the test statistics exceed their critical
In this paper we mainly concentrate on circular processeszalues. These findings are supported by simulations pre-
This has been done because for this class of models surrogatented in this paper. But the difference between bootstrap
data tests achieve exact levels. In simulations we have alsand surrogate is not as drastic as expected.
included noncircular ARL) processes. We have shown that  Surrogate data tests achieve exact levels for all circular
surrogate data tests do not always consistently estimate thestationary Gaussian processes. We conjecture that consistent
critical values. Thus surrogate data tests may differ esserestimation of critical values may not be possible for all such
tially from the theoretical tests that reject if the test statisticsprocesses. Note that this class also contains all types of long-
exceed their critical values. This means that the nature of theange-dependent processes. In particular, we think that boot-
test may change drastically by the use of surrogate datatrap methods will work only for more restrictive classes.
After the application of surrogate data, a test that measurebhis would imply that surrogate data can be applied for a

TABLE IV. p, p1, andp, for different test statistics and for different AB processes wittN=256 and 2048 using bootstrap resamples.
Xi= X1 +e(t), e(t) ~N(0, 1.

N ¢ T, T3 T4 Ts Te T7 Tg To Tio

256 0.5 p 0.050 0.046 0.023 0.048 0.026 0.040 0.059 0.053 0.051
Py 0.007 0.001 0.001 0.013 0.004 0.013 0.014 0.006 0.014
p2 0.008 0.000 0.029 0.016 0.029 0.024 0.006 0.005 0.014
256 0.99 p 0.055 0.053 0.014 0.044 0.009 0.026 0.105 0.056 0.047
P2 0.009 0.003 0.000 0.005 0.000 0.002 0.069 0.009 0.003
P2 0.006 0.006 0.037 0.012 0.042 0.027 0.016 0.005 0.008
2048 0.5 p 0.046 0.059 0.053 0.051 0.052 0.050 0.060 0.055 0.055
P2 0.006 0.004 0.005 0.006 0.007 0.012 0.009 0.005 0.008
P2 0.002 0.000 0.003 0.007 0.007 0.013 0.001 0.001 0.005
2048 0.99 p 0.046 0.038 0.026 0.043 0.027 0.048 0.055 0.048 0.043
Py 0.005 0.000 0.000 0.002 0.000 0.002 0.013 0.007 0.002
P2 0.010 0.004 0.025 0.010 0.024 0.006 0.010 0.010 0.011
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much richer class of models. On the other hand, if moreThe arguments could be extended to studies of the behavior
restrictive models are appropriate it may be appropriate tof both tests on the alternative. By use of the same arguments
switch from surrogate data tests to bootstrap methods. Fuwe expect that both tests are asymptotically equivalent. A
ther research is needed to specify when bootstrap is prefemore detailed study of this point is deferred to another paper.
able and which bootstrap method should be chosen. In this paper, we mainly discuss stationary circular Gauss-
In our study, we observe that the difference between surian. This has been done because for this class of processes,
rogate data tests and theoretical tests is present for some testact finite sample accuracy of levels holds for surrogate
statistics and does not appear for some others. It would béata tests. In simulations we observe that for more general
interesting to understand for which type of test statistics thislasses of stationary Gaussian processes that are noncircular,
different behavior appears and under which conditions thigevels are only asymptotically correct. The classical method
phenomenon disappears. This point requires further study. of phase randomization to generate surrogate data is dis-
Surrogate data can be used to obtain estimates of theussed in this paper. There are several other methods pro-
mean and variance of a test statistic. It is a common approagbosed in the literature that are more appropriate for noncir-
to use these estimates to get a studentized version of the testlar processes. It would be interesting to extend our
statistic and to use quantiles of the standard normat or discussion to these methods. In particular, it should be
distribution as critical values. Clearly this test does not haveehecked if the described phenomena remain present for these
an exact level, but for large enough sample sizes under regyrocedures.
larity conditions on the test statistic, one may expect ap-
proximately accurate levels. This may be shown by standard ACKNOWLEDGMENTS
applications of the central limit theorem for the conditional
distribution of the test statistic for surrogate data. These ar- This study is supported by DFG project MA 1026/7-1 in
guments imply that direct calculation of critical values by the framework of priority program SPP-1114. We would also
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[1] J. Theileret al,, Physica D58, 77 (1992. Anal. 37, 487(2001).

[2] S. Elgar, R. T. Guza, and R. J. Seymour, J. Geophys. Res. B[9] W. J. Braun and R. J. Kulpurger, Commun. Stat: Theory Meth.
89, 3623(1984). 26(6), 1329(1997).

[3] A. R. Osborne, A. D. Kirwan, A. Provenzale, and L. Bergam- [10] A. C. Davison and D. V. HinkleyBootstrap Methods and
asco, Physica 23, 75(1986. Their Applications(Cambridge University Press, Cambridge,

[4] P. Grassberger, Natufeondon 323 609 (1986. 1997).

[5] K. S. Chan, Fields Inst. Commuril, 77 (1997). [11] J. Timmer, Phys. Rev. B8, 5153(1998.

[6] J. Theiler and D. Prichard, Physica D10, 221 (1996. [12] J. Timmer, Phys. Rev. Lett35, 2647(2000.

[7]1 P. J. Brockwell and R. A. DavisTime Series: Theory and [13] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
Methods(Springer, New York, 1987 terling, Numerical Recipes in Fortran, The Art of Scientific

[8] D. Nur, R. C. Wolff, and K. L. Mengersen, Comput. Stat. Data Computing(Cambridge University Press, Cambridge, 1p92

016121-11



